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Abstract. Supervaluational semantics have been applied rather successfully to a variety of phenomena
involving truth-value gaps, such as vagueness, lack of reference, sortal incorrectedness. On the other
hand, they have not registered a comparable fortune (if any) in connection with truth-value gluts, i.e.,
more generally, with semantic phenomena involving overdeterminacy or inconsistency as opposed to
indeterminacy and incompleteness. In this paper I review some basic routes that are available for this
purpose. The outcome is a family of semantic systems in which (i) logical truths and falsehoods retain
their classical status even in the presence gaps and gluts, although (ii) the general notions of satifiabil-
ity and refutability are radically non-classical.

1. Introduction

Since its first appearance in van Fraassen’s semantics for free logic [1966a, 1966b], the
notion of a supervaluation has been regarded by many as a powerful tool for dealing
with truth-value gaps and, more generally, with phenomena involving semantic indeter-
minacy, partiality, deficiency of meaning. Unlike three-valued semantics, whose truth-
functional character induced a proliferation of competing variants, supervaluational se-
mantics appeared to offer a uniform way of keeping these phenomena under control;
and work in the following decades has supported this expectation with a fair deal of
significant developments. These include, among others, applications to such diverse
domains as quantum logic, temporal logic, vagueness, presuppositions, sortal incorrect-
ness, or the semantic paradoxes.1

In light of this prosperity, it is remarkable that supervaluation-like methods have
not registered a comparable fortune (if any) in connection with truth-value gluts, i.e.,
more generally, with phenomena involving semantic overdeterminacy or inconsistency
as opposed to indeterminacy and incompleteness. Part of the explanation is, of course,

                                                
1 See Van Fraassen [1968, 1969], Skyrms [1968], Lambert [1969], Thomason [1970, 1972],

Fine [1975], Kamp [1975, 1981], Bencivenga [1978, 1980b, 1981], Klein [1980], Pinkal [1983], van
Bendegem [1993], McGee and McLaughlin [1994] among others. The discussion of vagueness in Lewis
[1970], Grant [1974], Dummett [1975], and Przel-eçki [1976] also contain supervaluational ideas, al-
though the connection is not made explicit. In this sense, the approach seems to trace back to Mehl-
berg [1958], §29.
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to be found in the greater hostility that such forms of semantic anomaly have registered
on the whole. However, truth-functional methods have been applied to semantics with
gluts, or with gaps and gluts alike. For instance, four-valued generalizations of Kleene’s
[1938] three-valued matrices have become rather popular among those who view gaps
and gluts as two sides of the same coin, two complementary ways in which a semantics
may fail to be uniquely determined.2 One wonders, then, whether and to what extent
similar generalizations are available—at least in principle—to the friends of supervalua-
tionism.3

The purpose of this paper is to show that one can actually go quite far in that di-
rection. There is no intrinsic difficulty in applying the supervaluational insight to inter-
pret a language in the presence of semantic inconsistency. More generally, there is no
intrinsic difficulty in generalizing the concept of a supervaluation so as to deal with both
kinds of semantic anomaly—gaps and gluts. In fact there are many options available;
and in all cases the distinguishing features of van Fraassen’s original technique can be
preserved: (i) the general notions of satifiability and refutability are non-classical, but
(ii) logical truths and logical falsehoods (and more generally entailment relations be-
tween sentences) retain their classical status.

2. Supervaluations, Subvaluations, Ultravaluations

There is no question that the notion of a supervaluation as such is unsuitable for deal-
ing with semantic inconsistency. Typically, the supervaluation induced by an incomplete
interpretation, or model, M is construed as a function of the valuations induced by a
certain class of complete extensions of M.4 If M is at worst incomplete, i.e., incomplete
but consistent, such extensions are bound to be classical models, since they result from
“filling in” some gaps in an otherwise classical model. (This is not trivially true and
may have to be qualified depending on the syntax of the language, but the basic idea is
unproblematic.) Accordingly, if a sentence A involves expressions with respect to which
M is undefined, one can just look at the values A takes on such complete extensions
(values that can be determined by a classical evaluation procedure) and then register

                                                
2 See e.g.  Dunn [1976], Belnap [1977], Woodruff [1984], Muskens [1989], Fitting [1992], and

Gupta and Belnap [1993]. Most semantics for paraconsistent logics can also be viewed in this light
(see Priest & Routley [1989] for a survey).

3 Some hints can be found in Grant [1975], Belnap [1977], Rescher & Brandom [1980], Lewis
[1982], and Visser [1984]. My own preliminary forays are in Varzi [1991, 1994, 1997]. See also Hyde
[1997] for an application to vagueness.

4 In van Fraassen’s original formulation, this construction is actually left on the background, as
the basic valuations are introduced directly by assigning arbitrary truth-values to those atomic formulas
that are left indetermined by the given interpretation. With few exceptions, however, that account has
been abandoned in favor of the construction outlined here. See Skyrms [1968] and Bencivenga [1980a]
for explicit motivations, and Herzberger [1982] for further discussion and comparisons.
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their pattern of agreement: (i) if A is true in every extension, then certify it true in M; (ii)
if A is false in every extension, then certify it false in M; (iii) otherwise leave the value of
A in M undefined, for there appears to be no definite way of making up for the indeter-
minacy of M. This is roughly how a supervaluation works: it reduces the problem of
evaluating a sentence on a non-classical model to that of evaluating it on a family of
classical models. However, it is crucial for this method that we start with a model that is
“only” incomplete. If we begin instead with a model that is inconsistent, then its exten-
sions will be of no help: extending an inconsistent structure can never yield classical
valuations, as inconsistency is preserved under extension. And without classical valua-
tions, the main rationale for construing a supervaluation breaks down 5.

Note that the argument does not depend on the specific notion of a model at issue
(hence, ultimately, on the relevant notion of a language). Simply, it emphasizes what
Brian Skyrms [1968] once called the “Aristotelian notion of Redemption” offered by
supervaluations in response to the “Fregean notion of Sin” represented by a gapful
modeling: if we get the same outcome no matter how we fill in the gaps, then the gaps
don’t matter. But, of course, if there is no gap to begin with there is no redemption ei-
ther. If we therefore want to restore some balance between gaps and gluts we cannot
just look for a straightforward generalization of supervaluations, at least not in the sense
in which, say, a four-valued Kleene semantics is a straightforward generalization of the
three-valued version.6 Rather, we must consider extending the initial notion (e.g., by
analogy) in such a way as to preserve the “spirit” if not the “letter” of supervalua-
tional semantics as usually understood.

Now, if we keep at this intuitive level, one obvious solution suggests itself. If an in-
complete model M induces a supervaluation defined on the basis of M’s extensions
(specifically its complete extensions, each of which corresponds to some way of filling
in the gaps in M), likewise an inconsistent model M may be taken to induce a sort of
subvaluation defined on the basis of M's restrictions (specifically its consistent restric-
tions, each of which reflects some way of “weeding out” M’s semantic gluts). This is
intuitive, especially if we emphasize the duality between incompleteness and inconsis-
tency. In particular, if the guiding idea behind the notion of a supervaluation is that an
incomplete model is essentially the meet of a series of complete extensions thereof, so
that the supervaluation is construed essentially as the meet of the classical valuations in-
duced by those extensions, likewise an inconsistent model may be viewed as the join of

                                                
5 I take ‘classical’ valuations to be gapless and glutless assignments of truth values, leaving

room for the possibility that these deviate locally from classical logic (as for instance in Bencivenga’s
semantics for free logic [1980a, 1981]).

6 A four-valued Kleene semantics can be obtained from the three-valued semantics simply by
dropping the assumption that truth and falsehood are mutually exclusive, just as the three-valued se-
mantics is itself obtained from classical semantics by dropping the assumption that truth and falsehood
are exhaustive. (The usual clauses work as long as we state those for falsity along with those for
truth.) This was the gist of Dunn’s remarks in [1976].
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a series of consistent restrictions thereof, and the subvaluation can be construed as the
join of the classical valuations induced by those restrictions. In the general case, where a
model may be both incomplete and inconsistent (i.e., underdetermined with respect to
some basic expressions and overdetermined with respect to others), one can then rely
on a suitable combination of these two complementary ideas. If M is such a model,
neither its complete extensions nor its consistent restrictions are classical. However, the
complete extensions of its consistent restrictions are complete and consistent, hence
classical, and one can use this fact to obtain the desired generalization (the “ultravalua-
tion”, to give it a name): just take the second-order subvaluation based on the admissi-
ble supervaluations; or, alternatively, take the second-order supervaluation based on the
admissible subvaluations.7

To illustrate, suppose we follow Belnap [1977] and think of a model as a data base,
or as an epistemic state of a computer. (An epistemic conception of gaps and gluts is of
course best suited to supervaluationism.) Sam and Elisabeth enter the relevant informa-
tion. If neither says anything about P, then there is a gap. If the two of them enter con-
tradictory information about P, then there is a glut—not a desirable situation, but cer-
tainly a conceivable one. Now consider the following three cases:

A = true
B = false
C = gap.

If you ask the computer about the disjunction ‘A or C’, it should treat it as true in spite
of the gap, for the gap is ultimately irrelevant: no matter how the computer fills in its
lack of information, the disjunction comes out true by virtue of the first disjunct’s being
true. However, if you ask the computer about the disjunction ‘B or C’, then the com-
puter would treat it as neither true nor false: opposite ways of filling in the gap yield
opposite outcomes, and there is no way for the computer to choose one outcome over
the other. This is how supervaluations work. On the other hand, consider the following
set up:

A = true
B = false
C = glut.

                                                
7 This is the suggestion I examine in Varzi [1991, 1994]. The idea of a subvaluation can be

found in various formats in the works cited in note 3 and bears some obvious connections with the
non-adjunctive logics pioneered by Jaśkowski [1948] (compare e.g. Da Costa & Dubikajtis [1977],
Kotas & Da Costa [1979], Jennings & Schotch [1984], Schotch & Jennings [1989].) Epistemic se-
mantics exploiting similar intuitions may be found in Levesque [1984, 1990], Konolige [1985] and
Fagin & Halpern [1987] (see Vardi [1986] for connections). By contrast, the alternative approaches
considered in the sequel have not to my knowledge been considered in the literature, with the only ex-
ception mentioned in note 8 below.
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In this case the disjunction ‘A or C’ will still be true, but ‘B or C’ will be treated as
both true and false. For the computer has been told that B and C are both false, so the
disjunction must be false; and it has been told also that C is true, so the disjunction
must be true. There is no way for the computer to disregard one value or the other: both
Sam and Elisabeth are equally reliable. Thus both values must be accepted. And this is
the subvaluation.

Note that other strategies may be considered. For example, one could program the
computer so as to suspend judgment on ‘B or C’ also in the second case. The computer
cannot choose between Sam and Elisabeth—one could argue—hence it cannot answer
your query.8 Formally, this alternative way of dealing with gluts amounts to treating all
complete and consistent structures into which a given model M can be sharpened as
being on a par with one another. If there is no precise information, and if this lack of
precise information turns out to be relevant, then the sentence cannot be evaluated, re-
gardless of whether the imprecision is due to a gap or to a glut.  (Think of a certain
customary way of analysing failure of existence and failure of uniqueness in the case of
definite descriptions: surely these are opposite semantic accidents, but they both lead
eventually to the same situation of indeterminacy). Accordingly, one could construe the
general valuation induced by a model M as the supervaluation registering the pattern of
agreement among all admissible sharpenings of M, be they complete extensions or
consistent restrictions (or complete extensions of consistent restrictions).

Now both strategies—I submit—correspond to some way of implementing a basic
idea that is intrinsically supervaluational, viz. the idea of construing the valuation on a
model as a function of the valuations induced by a family of models strictly related to
the former in terms of semantic content. The two strategies differ as to the specific for-
mat of the function (meet versus join), and one can imagine other formats as well. But
precisely this seems to be the core of the supervaluationary approach: from an abstract
perspective, its distinguishing feature is the purely functional characterization of the
process whereby a language is evaluated—not a function of the compositional structure
of the language’s syntax (as in truth-functional semantics), but a function of the relative
complementarity of the language’s models. Depending on the variety of functions one
considers, a corresponding variety of semantics ensues.

3. Example: Propositional Logic

Let us illustrate the above in connection with a concrete example. To avoid lengthy defi-
nitions, it will be convenient to focus on a simple case study—say a propositional lan-
guage L built up as usual from a set A of atomic sentences by means of finitary con-
nectives such as negation (~), conjunction (∧), disjunction (∨), etc. It would be instruc-

                                                
8 See Lewis [1978: 46] for a suggestion in this vein, though Lewis [1983] favors instead a

subvaluational account of the sort discussed above.
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tive to work with arbitrary or more complex languages, but spelling out the details at the
proper abstract level would lead us too far afield. I shall confine myself to some occa-
sional remarks where this choice of syntax may have the effect of hiding something im-
portant.9

With respect to such a language, a model as classically understood is of course
nothing but a bivalent map associating each atomic sentence with a definite truth-
value, i.e., a total function from A to, say, 2={T, F}. By contrast, here we are interested
in the possibility of relaxing this notion by allowing a model to be undefined, or even
overdefined, with respect to some atomic sentences. This means that, in general, a
model need not be a total function on the domain A, and it need not be a total function
either:

(1) A model for L is any relation M ⊆ A ×  2.

(Alternatively, we could also define a model to be a set-valued function, e.g., a mapping
from A to the power set of 2: the two policies are isomorphic.)

Clearly (1) subsumes the classical notion of a model as a limit case. More gener-
ally, it is apparent that the class of all models, Mod(L), is partially ordered in terms of
“definiteness” by the inclusion relation ⊆, and we may single out complete, consistent,
and sharp (i.e., classical) models as distinguished special cases:

(2a) M is complete [M ∈Comp(L)] iff M[p] ≠  ∅ for all p∈A;
(2b) M is consistent [M ∈Cons(L)] iff M[p] ≠  2 for all p∈A;
(2c) M is sharp [M ∈Shrp(L)] iff it is both complete and consistent

(where M[p] is the image of p under M). Even more generally, one may define various
related notions such as, for instance, completeness and consistency relative to single
sentences, or sets of sentences. These generalizations are obvious and would be par-
ticularly useful in the context of languages with greater semantic complexity, where
there may be no guarantee that all gaps in an incomplete model can be filled in—or all
gluts in an inconsistent model weeded out—simultaneously. This would be the case, for
instance, if L were a first-order language with definite descriptions treated as bona fide
singular terms, or a language with an abstraction operator. For L as assumed, however,
we may ignore these complications.

Relative to this simple setting, the intuitive ideas outlined above can be made pre-
cise as follows. (I shall begin with the first strategy, and then move on to consider the
second and other strategies in the next sections.) First of all, every unsharp model can
be sharpened in various ways: if it is incomplete (but consistent), its sharpenings are its
complete extensions (completions, for short); if it is inconsistent (but complete), its
sharpenings are its consistent restrictions (or constrictions); and if it is both incomplete

                                                
9 I deal with these matters at some length in my [1994].
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and inconsistent, one may take as sharpenings the completions of its constrictions (or
the constrictions of its completions). More precisely:

(3a) M' is a completion of M [M'∈Comp(M)] iff M' is ⊆-minimal in the class {Mi
∈Comp(L): M ⊆ Mi };

(3b) M' is a constriction of M [M'∈Cons(M)] iff M' is ⊆-maximal in the class
{Mi ∈Cons(L): Mi ⊆ M};

(3c) M' is a sharpening of M [M'∈Shrp(M)] iff M' is a completion of some con-
striction of M.

Note that every complete model qualifies as a completion of itself, and every con-
sistent model as a constriction of itself. In fact, the cardinality of Comp(M), Cons(M),
and Shrp(M) will always be a power of 2, as an undefined or overdefined atomic sen-
tence can only be sharpened in one of two ways. Note also that ⊆-minimality and ⊆-
maximality are required for the simple purpose of avoiding undue loss of information
in the process of sharpening a given model. In the present case this only becomes rele-
vant when the model is both inconsistent and incomplete, but the issue could be more
substantial in the context of different model classes. Finally, and more importantly, note
that the sharpenings of any model are always sharp.

Now, every sharp model M': A → 2 extends to a straightforward classical valua-
tion, i.e., a Boolean map V': L → 2. Using the above notions, we then extend every
model M ⊆ A × 2 to a corresponding valuation V ⊆ L × 2 as follows:

(4a) if M ∈Cons(L), set V =I{V': M'∈Comp(M)} (supervaluation);
(4b) if M ∈Comp(L), set V =U{V': M'∈Cons(M)} (subvaluation);
(4c) in general, set V = U{I{V': M'∈Comp(M")}: M"∈Cons(M)} (ultravaluation).

Thus, in general a sentence is certified true (at least) on a model M iff it comes out clas-
sically true in every completion of some constriction of M, and it is certified false (at
least) on M iff it comes out classically false in every completion of some constriction of
M. (For simplicity, I am following the radical course of treating all completions and
constrictions as admissible; a more general account would require a relation of admissi-
bility to be defined among models, so as to constrain valuations accordingly. I shall
come back to such generalizations below.)

It is immediate that the notion defined in (4c) subsumes the ones in (4a)–(4b) as
limit cases. That is, relative to models that are consistent or complete, the ultravaluation
reduces to the supervaluation and to the subvaluation, respectively, each of which re-
duces to the classical valuation when the model is both complete and consistent, i.e.,
sharp. This justifies treating ultravaluations as embodying and generalizing the spirit of
supervaluationism, and guarantees that the resulting semantics is normal, i.e., reduces to
classical semantics when all the classical requirements are jointly satisfied.

To get a flavor of the sort of generalization afforded by (4a)–(4c), it is now suffi-
cient to look at some instances of the dual behavior of super- and subvaluations. For



8

example, it is clear that truth and falsity are neither exhaustive nor exclusive: just as a
supervaluation on an incomplete model will leave certain sentences undefined as a result
of conflicting outputs in the model’s completions, likewise a subvaluation on an incon-
sistent model will leave certain sentences overdefined as a result of conflicting outputs
in the relevant constrictions. On the other hand, just as a supervaluation may have the
effect of dismissing (or “redeeming”) a gap in case it turns out to be irrelevant, like-
wise a subvaluation may have the effect of dismissing an irrelevant glut (think again of
the computer’s behavior in response to Sam’s and Elisabeth’s inputs). Here are some
illustrative examples:

(5a) If M[p]={T} and M[q]=∅: (5b) If M[p]={F} and M[q]=2:

V [p]={T}
V [q]=∅
V [~p]={F}
V [~q]=∅
V [p ∨q]={T}
V [p ∧q]=∅
V [p ∨~p]=V [q ∨~q]={T}
V [p ∧~p]=V [q ∧~q]={F}

V [p]={F}
V [q]=2
V [~p]={T}
V [~q]=2
V [p ∨q]=2
V [p ∧q]={F}
V [p ∨~p]=V [q ∨~q]={T}
V [p ∧~p]=V [q ∧~q]={F}

In particular, note that just as a supervaluation on an incomplete model has the ef-
fect of making a tautology such as ‘p ∨ ~p’ true even if ‘p’ is neither true nor false (i.e.,
even if neither disjunct is true), a subvaluation on an inconsistent model has the effect of
making a contradiction such as ‘p ∧ ~p’ false even if ‘p’ is both true and false (i.e., even
if both conjuncts are true). For just as in the first case the process of filling in the gap
guarantees that either ‘p’ or ‘~p’ is true in every possible completion of the model, in
the latter case the process of weeding out the glut guarantees that either ‘p’ or ‘~p’ is
false in every possible constriction. This restores a perfect symmetry between one of
the most characteristic features of the supervaluationist semantics for incomplete mod-
els—the distinction between the logical law of excluded middle and the semantic princi-
ple of bivalence—and what seems to be its natural counterpart for inconsistent mod-
els.10

More generally, here is how the classical truth conditions for compound sentences
are weakened on the present account:

                                                
10 The distinction was first emphasized by Mehlberg [1956], §29, and (independently) by

McCall [1966] and especially van Fraassen [1966a], §8. The case for its counterpart can be traced back
to Jaśkowski [1948] and Przel-eçki [1964], but see also Rozeboom [1962]; more recent sources are Bel-
nap [1977], Rescher and Brandom [1980], Lewis [1982], and Urchs [1994]. I discuss it at some length
in Varzi [1997].
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(6a) T∈V [~A] iff F∈V [A]
F∈V [~A] iff T∈V [A]

(6b) T∈V [A ∧ B] only if T∈V [A] ∩ V [B]
F∈V [A ∧ B] if F∈V [A] ∪ V [B]

(6c) T∈V [A ∨B] if T∈V [A] ∪ V [B]
F∈V [A ∨B] only if F∈V [A] ∩ V [B].

The supervaluational treatment of gaps is responsible for the weakening in the second
half of (6b) and the first half of (6c); the subvaluational treatment of gluts is responsible
for the weakenings in the other two halves.11

It is then easy to see that these symmetries extend throughout the framework. In
particular, a simple dualization of the usual argument establishing the adequacy of su-
pervaluational semantics to classical propositional logic will show a corresponding ade-
quacy of subvaluational and, more generally, ultravaluational semantics. To be more
precise, where K is any set of models and A any sentence, define:

(7a) TK(A) = {M∈K: T∈V [A]} (the K-truth set of A)
(7b) FK(A) = {M∈K: F∈V [A]} (the K-falsity set of A).

Thus, the K-truth set of a sentence A is the set of all K-models in which A is at least true,
and similarly for its K-falsity set. This allows us to generalize the ordinary notions of
logical truth, falsity, etc. in the obvious way:

(8a) A is K-true iff TK(A) = K
(8b) A is K-false iff FK(A) = K
(8c) A is K-satisfiable iff TK(A) ≠ ∅
(8d) A is K-refutable iff FK(A) ≠ ∅.

Then the following is easily seen to hold whenever Shrp(L) ⊆ K ⊆ Mod(L):

 (9) A sentence A is K-true/false/satisfiable/refutable iff A is Shrp(L)-true/false/
satisfiable/refutable, respectively.

For if Shrp(L) ⊆ K and A is K-true, then obviously A is also Shrp(L)-true. On the other
hand, if Α is not K-true, then there must exist some model M∈K with the property that
every constriction M"∈Cons(M) has some completion M'∈Comp(M") in which A is
not true, i.e., such that T∉V' [A]. But completions of constrictions are complete and
consistent. Hence the above amounts to saying that there must exist a model

                                                
11  The strengthening obtained by restoring biconditionals throughout (6b) and (6c) would corre-

spond to the above-mentioned four-valued generalization of Kleene’s three-valued scheme.
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M'∈Shrp(L) in which A is not true, which means that A is not Shrp(L)-true. The proofs
for the other equivalences is similar.

Thus, the account preserves and generalizes another important feature of super-
valuational semantics. It retains holus bolus the classical notions of logical truth and
falsity as well as the classical notions of satisfiability and refutability—not only in the
presence of gaps, but also in the presence of gluts, or both.

Of course, these results do not necessarily carry over to languages of greater se-
mantic complexity. More importantly, they cannot be extended immediately to arbitrary
sets of L-sentences so as to cover other important logical or model-theoretic notions. It
is here that the non-standardness of the semantics shows up. For instance, it follows
from (9) that the classical notion of logical consequence continues to hold if we restrict
it to pairs of sentences; however, this notion becomes rather wild as soon as we go be-
yond this simplest case. To be more precise, consider the obvious candidates for defin-
ing entailment between sets of sentences in the presence of gaps and gluts:

(10a) Σ K-entails Γ positively [Σ  
K/T

 Γ] iff I{TK(A): A∈Σ} ⊆ U{TK(A): A∈Γ}
(10b) Σ K-entails Γ negatively [Σ  

K/ F
 Γ] iff I{FK(A): A∈Γ} ⊆ U{FK(A): A∈Σ};

(10c) Σ K-entails Γ [Σ  
K
 Γ] iff Σ K-entails Γ both positively and negatively.

(In classical logic these notions of entailment coincide, as one verifies by taking
K = Shrp(L); but in the general case they need not agree. This assimilates our semantics
to most general semantics with gaps and/or gluts.12) Then the following clearly holds
whenever Shrp(L) ⊆ K ⊆ Mod(L):

(11a) A  
K
 B iff A  

Shrp(L)
 B.

Moreover, the following hold for arbitrary sets Σ and Γ:

(11b) Σ  
Cons(L)

 B iff Σ  
Shrp(L)

 B
(11c) A  

Comp(L)
 Γ iff A  

Shrp(L)
 Γ.

However, these equivalences may not hold when the sentences A and B are replaced by
two or more sentences. For instance, the entailments corresponding to the rules of ad-
junction and disjunction may fail:

(12a) A, ~A  / 
K/T

 A ∧ ~A whenever TK(A) ∩ FK(A) ≠ ∅
(12b) A, ~A  / 

K/ F
 A ∧ ~A whenever TK(A) ∪ FK(A) ≠ K

(12c) A ∨ ~A  / 
K/T

 A, ~A whenever TK(A) ∪ FK(A) ≠ K
(12d) A ∨ ~A  / 

K/ F
 A, ~A whenever TK(A) ∩ FK(A) ≠ ∅.

                                                
12 See e.g. Blamey [1986] and Muskens [1995]. The significance of this situation has been em-

phasized in Dunn [1997].
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It is precisely this that makes the overall framework paraconsistent (and paracom-
plete). It follows from (11a) that contradictions “explode” consequentially, just like in
classical logic, and tautologies implode. However, (12a)–(12d) show that, in general,
inconsistencies and incompletenesses do not metastasize throughout the entire lan-
guage. For accepting unsatisfiable premiss sets or irrefutable conclusion sets is not tan-
tamount to endorsing unsatisfiable (contradictory) premisses or irrefutable (tautol-
ogous) conclusions; and this protects the relations of entailment defined in (10a)–(10c)
from logical trivialization. (At present, the exact characterization of the patterns that are
valid in the class of all models is still an open problem.)

4. Up or Down?

Before considering our second strategy for generalizing supervaluations, it is worth
pointing out an important connection between the above account (and the intuitive ra-
tionale behind it) and certain structural properties of the notion of a model.

Mod(L) is partially ordered in terms of “definiteness” by the inclusion relation ⊆.
In fact, ⊆ is a complete lattice ordering. This means that if we take any models for L
and put them together, either by union or by intersection, we still get a model for L.
More specifically, the whole class of models can be regarded as being “generated”
from the class of sharp models by closing it under these two operations:

(13a) Cons(L) is the closure of Shrp(L) under I ;
(13b) Comp(L) is the closure of Shrp(L) under U ;
(13c) Mod(L) is the closure of Shrp(L) under both I and U.

Each single model, in turn, can be regarded as being generated from a certain class of
sharp models, viz. the class of its sharpenings:

(14a) if M ∈Cons(L), then M =I{M': M'∈Comp(M)};
(14b) if M ∈Comp(L), then M =U{M': M'∈Cons(M)};
(14c) in general, M =U{I{M': M'∈Comp(M")}: M"∈Cons(M)}.

These facts are illustrated in Figure 1.
Now, (14a)–(14c) correspond very closely to the definitions in (4a)–(4c). And

since a model is essentially an evaluation of atomic sentences, one could take this corre-
spondence very seriously: those definitions may be viewed as a natural extension of
these very facts to the task of evaluating compound sentences. That is to say, (4a)–(4c)
may be viewed as being patterned after (14a)–(14c). Just as every model is the
meet /join of a certain class of sharp models, likewise the valuation on any model is the
meet /join of the valuations induced by those sharp models.
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p,~p,q,~q

p,q,~qp,~p,q

~p,~q

p,q

p,~p,~q ~p,q,~q

p

~p

q

~q

COMPLETE

CONSIS
TENT

COMPLETE

CONSISTENT

p,~q ~p,q q,~qp,~p

Figure 1. Lattice of models of a propositional language with only two atomic sentences, p
and q. Each node corresponds to a possible model, with ‘p’ and ‘~p’ indicating the presence
of T and F respectively in the values for ‘p’ (likewise for ‘q’ and ‘~q’). The ordering ⊆ goes
uphill along the dotted lines: models below the curved line in the bottom half (grey region)
are consistent; models above the other curved line, in the top half (light grey region), are
complete. Classical (sharp) models lie in the intersection of these two regions (dark grey re-
gion).

I am not sure exactly how much weight to put on this line of argument, though it
does appear to bring out an interesting way of explaining the intuitive rationale behind
(4a)–(4c). At the same time, it falls short of providing an exclusive account. For as I
mentioned earlier, there is an obvious variant of (4c). It is obtained by redefining the
ultravaluation induced by a model M to be the relation

(4c') V =I{U{V': M'∈Cons(M")}: M"∈Comp(M)}.

Intuitively, this corresponds to a valuational policy where the things to be done are re-
versed: here one must first fill in the gaps (i.e., look at the completions of the given
model) and then see whether there is any way of weeding out the gluts (looking at its
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constrictions) which agree on some common value. In short: a sentence is true (false)
on an arbitrary model M iff it is true (false) on some constriction of every completion
of M. This policy seems just as natural as the one defined in (4c). And indeed, along
with (14c) we can also prove the following general equality, matching (4c'):

(14c') if M ∈Mod(L), then M =I{U{M': M'∈Cons(M")}: M"∈Comp(M)}.

Thus, if (14c) provides grounds for (4c), (14c') should provide grounds for (4c'); and it
would be natural to expect that the two definitions yield the same semantic relation (the
same ultravaluation).

Rather surprisingly, however, this is not the case. To see this, let VUI be the ultra-
valuation defined in (4c) (for arbitrary M), and let VIU be its dual defined in (4c') Both
valuations agree on the partial truth conditions for compound sentences, (6a)–(6c). And
it is easy to verify that both valuations coincide as far as the main logical properties are
concerned—for instance, (9) to (12d) would continue to hold even if we redefined
(8a)–(8d) in terms of VIU. However, with respect to the truth values that a sentence may
take on a model that is both incomplete and inconsistent, the two valuations may dis-
agree. For example, if M is overdefined with respect to an atom, p, and undefined with
respect to another atom, q (as in the leftmost node of the lattice in Figure 1), then the
biconditional ‘p ↔ q’ is evaluated in two different ways.13 It is evaluated as neither true
nor false if we use the first schema, VUI. For there are only two constrictions of M, one
where ‘p’ is true and one where ‘p’ is false; and each constriction has two completions,
one where ‘q’ is true and one where ‘q’ is false. Thus, for each constriction there is a
completion where ‘p ↔ q’ is true and a completion where ‘p ↔ q’ is false, leaving the
biconditional truth-valueless. On the one hand, if we use the alternative schema, VIU,
then ‘p ↔ q’ is evaluated as both true and false. For there are two completions of M, one
where ‘q’ is true and one where ‘q’ is false; and in each completion ‘p ↔ q’ is both true
and false, since each completion has a constriction where ‘p’ is true and one where ‘p’
is false. Thus VUI[p ↔ q]=∅ but VIU[p ↔ q]=2. More generally, it turns out that VUI is
always included in VIU (since every completion of any constriction of a model M is ex-
tended by some constriction of some completion of M), whereas the converse only
holds if M is either consistent or complete (for in such cases both VUI and VIU reduce to
the same supervaluation and the same subvaluation, respectively).

This result of course weakens the above argument. For if the point of the argument
is that the way a valuation is construed from sharp valuations may be grounded directly
upon the way an arbitrary model can be represented in terms of sharp models, then the
question arises of what criteria could eventually justify a choice between two equally
grounded valuational policies. And that seems to have no principled answer. Nonethe-
less, there is a good explanation for this impasse. For in the final analysis this situation

                                                
13 The example is based on a remark from Visser [1984: 194].
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ties in directly with the assumption that inconsistency and incompleteness are two sides
of the same coin. If we take that standpoint, it should come as no surprise that when
gluts and gaps occur simultaneously, the strategy we are examining forces us to choose
among two possible policies: we can either weed out the gluts first, or we can start by
filling in the gaps. And although in general these two policies yield equal results, in
those cases when the very expression to be evaluated amounts to a direct comparison
between gluts and gaps (as with ‘p ↔ q’ in the indicated model) the difference must be-
come apparent: on one policy gluts go first, hence gaps prevail; on the other gaps go
first and gluts prevail. (This point becomes clearer if one considers that, in a standard
propositional language like L, a biconditional ‘p ↔ q’ is provably the only type of sen-
tence in two variables—up to logical equivalence—on which the two policies may dis-
agree.)

To be sure, one can now see that for any incomplete and inconsistent model M
there is a whole family of equally legitimate (but increasingly stronger) potential
valuations: a family of ultravaluations forming a complete lattice under the inclusion
relation ⊆, with VUI at the bottom and VIU at the top. The intermediate elements of this
lattice need not be very “natural”, as they would somewhat arbitrarily shift between VUI

and VIU for different (compound) sentences. Nevertheless, the semantic complexity of
such a proliferation has some intrinsic interest and could be a rewarding subject for
further exploration.

5. Gluts as Gaps

Both variants of the strategy described above exploit the intrinsic duality between gaps
and gluts. Let us now consider the second strategy for generalizing supervaluations
mentioned in Section 2. This is based on an idea that is somewhat opposite to duality,
viz. that semantic gaps and gluts are phenomena of the same sort. As I already men-
tioned, the intuition operating here is reminiscent of a certain way of dealing with these
phenomena in connection with the semantics of singular terms such as definite descrip-
tions: if there are no objects or more than one object satisfying the identifying property
of the description, then the description is left without a denotation, i.e., its interpretation
is left undefined. Likewise, one could advocate a radical policy with respect to the inter-
pretation of other expressions, including valuation of sentences: if there is either a gap
or a glut in a sentence’s pattern of reference then—one could argue—the preconditions
for a truth-value assignment are violated.

Formally, the shift of attitude corresponding to this view is only a matter of
changing the final definitions: subvaluations on inconsistent models become standard
supervaluations, i.e., meets of classical valuations, albeit induced by constrictions rather
than completions. More generally, one can obtain a semantics in which gluts are treated
as gaps of a kind by redefining the ultravaluation induced by an arbitrary model M to be
the relation
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(4c") V =I{I{V': M'∈Comp(M")}: M"∈Cons(M)}.

Thus, on this view a sentence is true (false) on a model M iff it is true (false) on every
completion of every constriction of M; if it is true on every completion of some con-
striction, and false on every completion of some other constriction, then the sentence is
left truth-valueless.

Let us use VII to indicate the ultravaluation defined by (4c"). The main effects of
such an amendment are not difficult to imagine. Gluts are cured with the same medicine
that cures gaps. And since the classical valuations from which VII is construed are
functions, in the end VII will simply be a (possibly partial) function, i.e., it will
involve no gluts. In other words, unlike VUI and VIU, VII-valuations on inconsistent
models will never treat any sentence as both true and false, as the presence of con-
flicting outputs in the relevant constrictions will be treated as a sign of indefinite-
ness. In fact, it is easy to prove that VII is always bound to be included in the
restriction of VUI to the set of sentences {A: VUI[A] ≠  2}. (This set is included in {A:
VIU[A] ≠  2}, so the same could be said of VIU.) As an example, here is a comparison
between the two strategies in the most critical case, where M is both inconsistent and
incomplete:

(15a) If M[p]=∅ and M[q]=2: (15b) If M[p]=∅ and M[q]=2:

VUI [p]=∅
VUI [q]=2
VUI [~p]=∅
VUI [~q]=2
VUI [p ∨q]={T}
VUI [p ∧q]={F}
VUI [p ∨~p]=VUI [q ∨~q]={T}
VUI [p ∧~p]=VUI [q ∧~q]={F}

VII [p]=∅
VII [q]=∅
VII [~p]=∅
VII [~q]=∅
VII [p ∨q]=∅
VII [p ∧q]=∅
VII [p ∨~p]=VII [q ∨~q]={T}
VII [p ∧~p]=VII [q ∧~q]={F}

Another important consequence is that in this case the variant definition corre-
sponding to the reversion of the valuational process does not yield anything new, i.e.,
the following is perfectly equivalent to (4c"):

(4c ''') V =I{I{V': M'∈Cons(M")}: M"∈Comp(M)}.

In fact, both definitions reduce to

(4c '''' ) V =I{V': M'∈Shrp(M)},

where the notion of a model’s sharpening may be interpreted equivalently as in (3c) or
as its obvious dual, meaning completion of a constriction rather than constriction of a
completion. In other words, if we treat all sharpenings in the same way, it does not mat-
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ter whether we get to them via completions or via constrictions: the final class of mod-
els is always the same.

This equivalence among possible equally legitimate variants may be regarded as an
advantage of the present strategy over the strategy examined in Sections 3 and 4. On the
other hand, the connection with the lattice-theoretic properties of Mod(L) is now much
weaker—in fact, inexistent. For not only are (4c '' )–(4c '''' ) plainly in contrast with
(14c)–(14c'). On this account, every model inconsistency results in valuational incom-
pleteness, i.e., M[p] = 2 always implies VII [p] = ∅, which means that valuations on in-
consistent models are not direct extensions of the models themselves. More generally,
on this account valuations are not monotonic: if M ⊆ M', then VII ⊆ V'II if M' is con-
sistent, while V'II ⊆ VII if M is complete. By contrast, both variants of the first strategy
above are perfectly monotonic, i.e., M ⊆ M' always implies VUI ⊆ V'UI and VIU ⊆ V'IU. If
we stick to the suggested reading of ⊆ as an ordering going up hill in terms of degrees
of definiteness, this is of course an important advantage of that strategy over the one
presently under consideration.

Be it as it may, it will be clear that these differences do not drastically effect the
logical flavor of the semantics. In particular, the general facts expressed by (9) will con-
tinue to hold under the present account as well: the basic notions of logical truth and
falsehood, we may say, as well as the notions of sentence satisfiability and refutability,
do not depend on our specific attitude towards gaps and gluts. Still, concerning entail-
ment the situation is slightly different, as the following is now provable (for Shrp(L)
⊆ K ⊆ Mod(L)):

(16) A set of sentences Σ is K-satisfiable/refutable iff Σ is Shrp(L)-satisfiable/ re-
futable, respectively

where a set is said to be K-satisfiable/refutable if its elements are all simultaneously K-
satisfiable/refutable. This means that the rule of adjunction is now valid. More precisely,
one can prove that an entailment is (positively or negatively) K-valid in the semantics
based on VII iff it is (positively or negatively) K ∩ Cons(L)-valid in the semantics based
on VUI or VIU. Thus, unlike the previous stategy, the strategy under examination is fully
equivalent—as far as logic goes—to ordinary supervaluational semantics.

6. Completing the Map

Nothing at this point prevents us from considering further possible ways of generaliz-
ing the basic notion of a supervaluation. For instance, generally speaking there is no
definite reason to dismiss the (pairwise equivalent) variants obtained by replacing I
with U in (4c  '' )–(4c '''' ) above. For if one can provide arguments to the effect that gluts
should be treated as gaps, then one may be willing to consider the dual attitude and re-
gard gaps as a type of gluts.
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There are other possible variants. The overall picture is given by the family of ultra-
valuations generated by the following scheme:

(17) Vƒ1C1ƒ2C2
 = ƒ1{ƒ2{V': M'∈C2(M")}: M"∈C1(M)},

where each ƒi is either U or I, and each Ci is either Comp or Cons (C1 ≠ C2). The dia-
gram in (18) shows the ordering of the resulting valuations in terms of relative strength.
(Here I write ‘↑’ and ‘↓’ to abbreviate ‘Comp’ and ‘Cons’, respectively. Thus, VU↓I↑ is
just the old VUI, and so on.)

       ⊆ VU↑I↓ ⊆ VI↓U↑ ⊆
(18) VI↑I↓ = VI↓I↑     VU↓U↑ = VU↑U↓

       
⊆

 VU↓I↑ ⊆ VI↑U↓ 
⊆

 

As before, each relation of strict inclusion leaves room for an entire lattice of in-
termediate (but somewhat arbitrary) valuations, which we need not examine here. And
again, all options turn out to share the same basic properties expressed by (9). Thus, the
above remark to the effect that such properties as K-truth, K-falsity, etc. do not seem to
depend on one’s specific attitude towards gaps and gluts (i.e., on the specific cure that
gaps and gluts require) extends to the full spectrum of strategies compatible with the
supervaluational “spirit”. On the other hand, as regards logical entailment, all schemes
induce a departure from classical logic, but in different degrees. The adjunctive pattern
A, ~A A ∧~A holds only for the two leftmost (purely supervaluational) schemes, and its
disjunctive dual A∨~A A, ~A holds only for the rightmost (purely subvaluational) pair.

There is more room for generalization. For instance, all the strategies discussed so
far and captured by (17) require that in order to evaluate an L-sentence A one considers
the value assigned to A in every sharpening of the given model. However, this is a sim-
plification that one may want to relax. In general, one might want to assume a suitable
relation R to be defined on Mod(L) so that only models in the image R[M] would qual-
ify as admissible refinements of a given model M. For instance, we may suppose that
certain ways of filling in certain gaps in a model are incompatible with certain ways of
filling in other gaps, or with certain ways of weeding out gluts, on account of certain
“penumbral connections” (in the terminology of Fine [1975]).14 We may in these
cases speak of R-completions and R-constrictions, respectively. From this point of view,
the policy followed above corresponds to the limit case R = Mod(L) ×  Mod(L), but it may
be interesting to see what can be gained by considering other cases as well. Moreover,
other means for construing valuations may be considered beside meet (I) and join (U).
In principle one may take any pair of functions ƒ1 and ƒ2, or even any ordered sequence
F = 〈ƒ0, …, ƒn 〉, where each ƒi may be thought of as having a relevant admissibility rela-

                                                
14 This point is detailed in Varzi [1997], §3.3.
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tion Ri associated with it. Thus, taking all this into account, (17) can be further general-
ized by considering the family of ultravaluations generated by the following scheme:

(19) VFR  = ƒ0{ƒ1{…{ƒn{Vn: Mn∈Rn[Mn–1]}: …}: M1∈R1[M0]}: M0∈R0[M]}

(where Vn is again the relevant classical Boolean assignment).
This yields a sufficiently abstract setting for further investigations. In fact, it em-

phasizes what is arguably a distinguishing feature of the general philosophy behind the
supervaluational method, viz. the purely functional characterization of the process
whereby a language is evaluated. All of these valuations are not truth-functional, i.e.,
they do not assign values as a function of the compositional structure of the language’s
syntax. They do, rather, establish the value of any given sentence as a function of the
relative completeness/consistency of the language’s models. Depending on the variety
of functions one considers, a corresponding variety of semantics ensues. And as (19)
suggests, the variety may be very wide indeed.15
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